

ASTRONAUT VS ALIENS
CODERS’ GUIDE

Introduction

Project Goal: Create Your Own Game
The video and computer gaming industry is huge! It has sales of between 85 and 100 billion
dollars and billions of players around the world. Clearly, it’s fun playing computer games, but
it’s even better to create your own game. Once you’ve created a game, you’ll have a better
understanding of how your favourite games are built, why certain design choices were made,
and what you might have done differently.

In the following six lessons, you are going to create a simple seek and pursuit game. An
astronaut needs to escape a planet and return to earth. First, he / she needs to get 3 solar
panels to power their space ship while escaping aliens and without running out of time or lives.
Once you have the basics, you can change game conditions like lives or speeds, to see how
these changes affect gameplay. You can also choose a different game theme if you do not like
astronauts and aliens.

This project uses a development process in which you’ll be repeatedly cycling through the
process of planning, designing, implementing, and testing as you refine your project. This is a
commonly used approach to software development called an iterative and incremental
process.

Plan
Before you start, here are some important tips:

• In the All Projects menu, there is a folder called Games! Open it and play then look at the
Astronaut Game sample project for ideas on how to start your project and see what is
possible.

• It is important to remember to save your project often! Click on the Arrow going
up to the Cloud icon.

Learning objectives - Here is what you’ll do in this project:

• Plan your work. Break it into stages or smaller steps.

• Repeatedly cycle through your work as you implement new features, test, and debug,

• Use the Lynx commands to create turtle movements and animation.

• Add interactive objects, such as buttons and interactive turtles to trigger actions and
restore starting position.

• Use multiple sprites to create animations

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 2

Introduction

• Use “random” events.

• Add event handlers to be used as triggers, such as collision and colour events.

• Add programming features to set up and run your simulation multiple times.

• Use conditional statements (if statements) with logic operators.

• Create and use different types of variables, including those associated with text boxes
and sliders as well as global and local variables.

• Add music and/or sound to improve the game experience

BEFORE YOU START: This project assumes you already have a Lynx account and are familiar
with the various components of the Lynx screen. We also assume you have made other Lynx
projects before starting this project.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 3

Lesson 1 - Start With a Plan

Step 1: Explore the Astronaut Game sample

Click on All Projects on the Lynx main page, open the Games folder, and select the
Astronaut vs Alien project. The project appears in Play Mode. Start the Game! To see how it
was created and also to make changes, log in to Lynx and click the green Edit button for this
project.

The project opens in the Lynx Editor.

While playing with the project, think about what you already know how to do and what’s new.
Consider what you like about the project and what you would probably do differently.

Step 2: Plan your work

Although it’s exciting to jump in and begin a new project, it’s important to start by first focusing
on your game’s functional design. There are several things you should think about before you
start coding.

1. Know your goal! The end project looks (and works!) better when you start with a plan
and you know what your goal is.

2. Decide on some project parameters. How many rewards (solar panels) will the Astronaut
have to find? Will the rewards be solar panels or something else? How many lives will
the astronaut have? Will it be an Alien pursuing the Astronaut or something else? In our
sample, an Astronaut is trying to find three solar panels to attach to the space ship but is
also trying to elude three aliens, but you should use your imagination.

v 1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 4

Lesson 1 - Start With a Plan

3. Create a first draft! Start by creating a first draft of the project that includes the main
project components. As a coder, it is important to plan and create your code before you
spend time on the visual design features (Tip: Choose your final clipart last.) Go over the
project several times - each time adjusting and fine-tuning it to achieve your original
goals. This is called an iterative approach to development.

4. Save time to polish your project! Remember to save some time at the end for
polishing the final project by, for example, adding special clipart and sounds or music.

Step 3: Start Your Game

After you have logged-in at https://lynxcoding.club/ click on Create a Lynx Project on your My
Projects page.

As with all new projects, there’s a turtle in the Work Area. The turtle will be your main player.
Since there will be other characters in this game, it’s important to give the turtle a meaningful
name, for example, Astronaut.

Right-Click on the turtle and in the Name field delete t1 and type Astronaut, then click Apply.

Leave the Astronaut set to the turtle shape so you can always see the direction it is heading.

Start by drawing a game field. This is the area in which the game will be played. It is like a
boundary. Use the Astronaut turtle to draw wide bars at the top and bottom of the screen and
at the two sides.

First drag the turtle to the top left-hand corner of the Work Area.

v 1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 5

https://lynxcoding.club/

Lesson 1 - Start With a Plan

Here’s How!

How do you figure out how long to make the bar? There are a few ways:

• Trial and error – this works, but can take some time.

• Remember the screen size you selected for your project – Standard size is 800 x 450.

• Check the position of the turtle. In the Command Centre, type:
show xcor
-395 You may get a slightly different number

This shows the distance from the turtle's position on the left edge, to the horizontal center of
the work area (since you’re looking at distance, you can disregard the negative sign) and so it
is approximately half the screen width.

Using any of the above methods to calculate the length, draw a wide bar by following these
instructions. Type in the Command Centre:

setheading 90 or seth.
pendown or pd.
setpensize 50 Sets the line thickness.
setc 'red' Replace red with blue, green.
fd 790 Use the width you calculated.

NOTE: It may be difficult to see your Astronaut turtle now (red on red!) so type setc 'black'
to change the Astronaut’s colour back to black. Don’t forget the quotation marks around the
colour name.

There is a Lynx Colour Chart in the User Guides section of the Help tab at lynxcoding.club.

Move the turtle to the bottom, left-hand corner of the Work Area and draw a bar at the bottom
of the screen.

Next, using the same process as described above, create thick bars at the sides of the Work
Area. You can use show ycor to determine the forward distance required.

Your Work Area should look like this:

v 1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 6

Lesson 1 - Start With a Plan

Step 4: Controlling the Astronaut

Next, let's control the Astronaut.

In the Procedures Pane, define a movement procedure for the Astronaut:

to movement
ask [astronaut] [fd 3 wait 1]
end

As you work, you may want to adjust your inputs for fd and wait

Test the procedure in the Command Centre.

pu Remember to pick the pen up first!
setc 'black' Choose any colour you want
forever [movement]

Forever runs the Movement instruction in the square brackets forever or until it’s
stopped either with a stopall command or by clicking the square Stop All icon just to
the left of the Command Centre.

Now that the Astronaut is moving, create a navigation system that uses buttons to change the
Astronaut’s direction.

Although there is only one turtle that is following instructions right now, this project will include
a number of different turtles. Ask temporarily asks the named turtle to follow a command

without changing the current turtle, the turtle that has been following (listening to) commands.
It’s important to always be aware of which turtle will react to commands.

v 1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 7

Lesson 1 - Start With a Plan

Start by writing direction procedures for the buttons in the Procedures Pane, for example:

to east
ask [Astronaut] [seth 90] Make sure you have brackets around [seth 90].
end

to south
ask [Astronaut] [seth 180]
end

Remember to ask the Astronaut to follow the instructions, just as you did in your movement
procedure.

Think about the heading for West and North and add these two procedures.

Next, create four buttons that will run these four procedures.

Right click on each button and give each one an appropriate label for example,
EAST. In the On click event handler, select the corresponding procedure name for that label.
Click Apply when you are done and do this for all four headings.

Test your buttons with the Astronaut. It will not move, but it should change its heading as you
click on buttons.

Remember to use semicolons (;) to add comments in, before or after a procedure in the
Procedures Pane to clearly identify what it does. This will really help your friends understand

the logic and purpose of your procedures. Commenting is a great habit of professional
programmers.

v 1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 8

Lesson 1 - Start With a Plan

Step 5: Save!

If you haven’t yet done so, give your project a name by clicking on the project name above the
Procedures Pane and typing in a new name.

Then SAVE!

Lynx does not automatically save your work, so save your projects often!

v 1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 9

Lesson 2 - Adding Solar Panel Rewards!

Step 1: Add Solar Panel Rewards

The Astronaut needs to be seeking something. In the sample game, the Astronaut is trying to
get three solar panels (but, of course, you can use whatever clipart or shape for your reward
that you want). Start by creating the first reward.

1. Find clipart you want to use for a reward. Choose an empty cell in the
Clipart Pane and click on the "+" sign in the bottom right corner.
Remember the number of this clipart.

2. Add a turtle and remember its name (t1 for now). You do not need to change this turtle’s
name. You’ll see why shortly.

3. Set this turtle to the clipart you chose as a reward image. In the Command Centre, type:
t1, setsh 1 (or whatever number your reward shape is). 
 
TIP: You can always use the setsize command to adjust the size of the reward turtle /
solar panel. The default setsize is 40.

4. Place this solar panel turtle somewhere in the Work Area.

Step 2: Capturing the Reward

Use an On touch event to let the Astronaut know it has reached the solar panel reward.

Right-click on the Astronaut, click on the down arrow next to On touch and select New. Then
click Apply.

Now check the Procedures Pane.

A new procedure appears in the Procedures Pane called Astronaut_touch. You need to
add instructions to this new procedure. What do you want to have happen once a solar panel
reward is touched (obtained)?

In the following Astronaut_touch procedure, if the Astronaut touches the reward turtle, it

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 10

Lesson 2 - Adding Solar Panel Rewards!

runs another procedure (which you will define shortly).

to astronaut_touch :touchedturtle
if :touchedturtle = 't1' [GotReward]
end

The if instruction sets up a conditional statement: If something is true, do whatever is in the
square brackets. If it is false, do nothing and go to the next instruction (if there is one).

Although you could just list some responses in the square brackets, it’s a good idea to use a
subprocedure (a procedure which is called by another procedure) since you may want to add
responses to the On touch event as you add features. Using subprocedures makes it easier to
edit these instructions and easier to read and understand your Procedures Pane.

The procedure GotReward isn’t defined yet. Write a new procedure in the Procedures Pane:

to GotReward
end

What do you want to have happen when the reward is obtained (touched)? Edit your
GotReward procedure, for example, to have the reward disappear:

to GotReward
ask 't1' [ht] ht stands for Hide Turtle
announce [You found the solar panel!]
end

Test your game components.

Remember, if you ever need to show your hidden turtle, type this in the Command Centre:

t1, st or ask 't1' [st]

Step 3: Adding More Solar Panel Rewards

Add two more turtles: type this in the Command Centre:

repeat 2 [clone 't1']

Place the three solar panels in three distant spots in the gaming area. When the Astronaut
finds a reward (when he /she touches a solar panel), you will have to know and do the
following things:
• Know which solar panel reward should hide (which one was touched);
• Show the next reward;
• Know when the last reward is found.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 11

Lesson 2 - Adding Solar Panel Rewards!

You could write separate programs for each Solar Panel reward turtle, but a more efficient way
of handling these actions is to use variables, in this case two global variables. The value for
the first variable is a list of all the unfound rewards and the value for the second is the current
reward.

Since the variable for the list of all unfound Solar Panel rewards needs to be reset each time a
new game is started, put it in a procedure that sets up or initializes your game, for example:

to initgame
make 'AllRewards' [t1 t2 t3] Creates a variable named 'AllRewards' and sets

its value to [t1 t2 t3]. Use your turtles’ names.
ask :AllRewards [ht] All turtles in the variable :AllRewards hide.
end

The InitGame procedure sets up the initial complete list of rewards, in this example, three
rewards. This procedure will be used to initialize other conditions as your game develops.

To test this procedure, type in the Command Centre:

initgame
show :AllRewards show the value of the variable :AllRewards

You should see:

t1 t2 t3

Note: You can "collapse" your procedures in the Procedures Pane by clicking on the triangle
beside to in any procedure. This way you can see the overall structure easily and your
Procedure Pane isn’t so cluttered! This does NOT work if to begins with a capital T.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 12

Lesson 2 - Adding Solar Panel Rewards!

Step 4: Create a Second Variable

Next you need to know which specific reward the Astronaut is seeking in each round.
Remember, this changes as the game is being played. You’ll also need a way to automatically
change the list of unfound solar panel rewards each time one of the rewards is found by the
Astronaut.

The following procedure carries out these actions:

to NextReward
if empty? :AllRewards [winner]
make 'CurrentReward' first :AllRewards
make 'AllRewards' butfirst :AllRewards
ask :CurrentReward [st]
end

First, examine the NextReward procedure line by line:

if empty? :AllRewards [winner]

Empty? reports true if its input (a word or list) is empty. If it is, Lynx runs the instruction in the
brackets, in this case, winner a subprocedure that is not yet defined. :AllRewards will only
be empty if the Astronaut has found all the Solar Panel rewards. This line checks if that is true.

As you go through the procedure, you’ll see how :AllRewards arrives at an empty state. This
instruction line is the first line of this procedure to avoid encountering a bug in the next line.

make 'CurrentReward' first :AllRewards

This line creates the second global variable defined as the first element in :AllRewards.
So, if the value of :AllRewards is [t1 t2 t3], the value of :CurrentReward would be
t1. The variable :CurrentReward represents only one reward.

make 'AllRewards' butfirst :AllRewards

Here, make resets the value of :AllRewards. It’s now everything it was before except (but)
the first element. So if :AllRewards had been [t1 t2 t3], then
butfirst :AllRewards is [t2 t3] (bf is the short form of butfirst).

ask :CurrentReward [st]

The turtle identified by the variable :CurrentReward shows.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 13

Lesson 2 - Adding Solar Panel Rewards!

Add the NextReward procedure to the Procedures Pane and then create a winner
procedure to celebrate winning the game, for example:

to winner
announce 'You win! Hooray!'
stopall Stops all processes.
end

You may want to add other features to this procedure later.

Try the procedure a few times and, as you do so, check the values of both the :AllRewards
and :CurrentReward variables. First stop the moving Astronaut. In the Command Centre,
type:

stopall

Then type:

initgame This hides the rewards.
nextreward This shows one of the rewards.
show :AllRewards You should see t2 t3
nextreward This shows the next reward
show :AllRewards You should see t3

Run these two lines again and again. At one point, the list should be empty, and you will see
the Winner message in the Announce box.

Don’t forget - Save your project!

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 14

Lesson 3 – Enemy Aliens

Step 1: Using the Variables

Before adding any enemies to chase the Astronaut, use the variables you created to make
your procedures work for all the Solar Panel rewards.

In Lesson 2, Step 2, you created an astronaut_touch procedure and a GotReward
procedure for t1 only, but now you have three rewards. This is where the variables you
created to represent the specific reward being touched comes in handy.

Edit the astronaut _touch and GotReward procedures to make them work for each of the
Reward turtles at the appropriate time.

to astronaut_touch :touchedturtle
if :touchedturtle = :CurrentReward [GotReward]
end

to GotReward
ask :CurrentReward [ht]
announce [You found the reward!]
NextReward This keeps the game going.
end

Test your procedures. First run the InitGame procedure, then NextReward then type
forever [movement]. Although you’re still missing parts of your game, at this point, just
make sure these work as you expect.

It’s a good idea to create a StartGame procedure to run these procedures:

to startgame
initgame
nextreward
forever [movement]
end

Add a Start Game button in the Work Area to run this procedure.

Step 2: Adding Enemies

You have the bare bones of a game, but a game is more fun when there are some challenges.
In the sample game, the Astronaut is chased by its enemies, which in this sample are Aliens,
but you can use any enemy shape.

Find the shape you want to use for your enemies, add it to the Clipart Pane, and take note of
the shape number.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 15

Lesson 3 – Enemy Aliens

Add three turtles to the work area.

Set the Alien turtles to the shape you’ve chosen.

Type in the Command Centre:

ask [t4 t5 t6] [setshape 20]

Use your shape’s number and turtles’ names. Use setsize to adjust their size if need be.

Since you’ll be frequently addressing these turtles as a group, it’s a good idea to create a
variable that stands for all of the Aliens.

Edit your InitGame procedure to create a new variable:

to InitGame
make 'AllRewards' [t1 t2 t3]
ask :AllRewards [ht]
make 'aliens' [t4 t5 t6] Add this line to create a variable. Use your turtles’ names.
ask :aliens [setheading random 360] Each alien’s heads in a different direction.
end

You don’t want to hide any of the Alien turtles!

Step 3: Chasing Movements

Next, you need to get your Aliens to move so they can try to bump into the Astronaut. Since the
Aliens need to keep moving as the Astronaut moves, the instruction can be added to the
movement procedure.

Add a new instruction in the movement procedure:

to movement
ask [astronaut] [fd 3 wait 1]
ask :aliens [fd 5]
end

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 16

Lesson 3 – Enemy Aliens

Step 4: Debugging

Test all your procedures: just click on the Start Game button, then on your your N, S, E, W
buttons.

Is everyone moving? When you click a direction button is the right turtle following the
instructions?

As a project gets more complex, bugs begin to pop up. All programmers get bugs in their
programs – that’s why companies have quality assurance programmers and beta versions of
their software!

Take the time to make sure you understand why a bug appeared and what you can do to
prevent it from happening. Debugging is an important process and shouldn’t be left to the end.

Make sure you’ve used the correct syntax, for example, check that you didn’t use a colon (:)
where you need a quotation marks (' ') or vice versa. Review all the steps in this project so
far to make sure you clearly understand when to use each one.

Don’t forget to Save often!

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 17

Lesson 4 – Events

Step 1: Astronaut Meets Alien!

Although the Astronaut and Aliens are all moving, nothing is happening when they meet. What
should happen once they meet? Here are some ideas:
• The Astronaut disappears, there’s a loud noise, and the game is over.
• The Astronaut hides and then pops up in a new random place to start again.
• The Astronaut loses either a life or a point or runs out of time.

All of these options are possible. In the first two, the game is either over too quickly or lasts
forever. The third option lets you set up some parameters to keep track of the Astronaut’s
encounters.

Give the Astronaut Lives!

Start by giving the Astronaut Lives and a way to lose or gain them. Although you could create a
global lives variable, you can also represent these values by using a text box. Text boxes not
only display the number of lives available, but help calculate any changes to the number of
lives. They are like variables that you can actually watch!

Create a text box by selecting Text in the “+” menu.

Right-click on the text box and give it a name that clearly shows what it is
tracking, for example, Lives. Remember, a text box name must be one word with
no spaces. The box will only contain a number so it doesn’t need to be large.
Type a number in the text box, for example, 5. Leave the name of the box
showing.

When a text box is created, Lynx generates two new words. One is the name of the text box,
which is used to report the text box’s contents to an appropriate command. For example, if
you type in the Command Centre:

show lives
you get this response
5 Or whatever number you typed in the text box.

The second word generated lets you set the text box’s contents or value. In the Command
Centre, type:

SetLives 15

The number in your text box should change to 15.

Now reset the Lives text box to 5. This is the number of lives an Astronaut has left, at the
beginning of a game.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 18

Lesson 4 – Events

When should the Astronaut lose a life?

One time an Astronaut would lose a life should be when it touches an Alien. You already have
the Astronaut_touch procedure that contains instructions for when an Astronaut touches a
Reward. Edit that procedure to include instructions for what to do when the Astronaut touches
an Alien.

to astronaut_touch :touchedturtle
if :touchedturtle = :reward [gotreward]
if member? :touchedturtle :aliens [LoseOneLife]
end

Member? checks if the turtle being touched is one of the elements of the variable :aliens. If
it is, it runs LoseOneLife, a new procedure that will be defined net.

What should happen when LoseOneLife runs? The Astronaut should lose a life. Define a
LoseOneLife procedure.

to LoseOneLife
if Lives = 0 [stopall]
SetLives Lives - 1 This sets the new value of Lives to whatever it was at first minus 1
end

Test your procedures. Run the game, and let collisions happen until the text box reaches zero.

Step 2: Astronaut Gets Solar Panel Reward

Astronauts should also be able to gain lives if they capture a Solar Panel Reward. How can
you make this happen?

You can increase the value of Lives as well as decrease it. Edit your GotReward procedure to
give the Astronaut an extra life when it finds a Solar Panel Reward.

to GotReward
ask :CurrentReward [ht]
announce [You found a solar panel!]
setLives Lives + 1
NextReward
end

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 19

Lesson 4 – Events

Edit your InitGame procedure to set up the initial value of the Lives text box.

to InitGame
make 'AllRewards' [t1 t2 t3]
ask :AllRewards [ht]
make 'aliens' [t4 t5 t6]
ask :aliens [setheading random 360]
SetLives 5 Use the starting value you want, you can change your mind later.
end

Check your edited procedure. Play your game a few times to make sure everything works.
Take a little time to review all your procedures to make sure you understand what each one
does.

REMEMBER: you can "collapse" your procedures in the Procedures Pane by clicking on the
triangle beside to in any procedure.

Step 3: Changing Speeds

To add another challenge to your game, create a slider that will let you change the Aliens’
speed.

Select Slider in the “+” menu. Right-click on the slider and give the slider a meaningful, one-
word name, such as AlienSpeed. Again, use a single word, no space.

Just as with text boxes, when creating a slider, Lynx automatically generates two new words,
one that reports the current value of the slider, the other that lets you set the value by way
of commands.

Since this slider will be used to set the speed of the Aliens, you want to limit the slider’s range.
Right-click on the slider again and set an appropriate maximum and minimum level, for
example, a maximum of 20 and a minimum of 5.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 20

Lesson 4 – Events

Next, edit the movement procedure so that the Aliens move forward the speed selected on the
slider.

to movement
ask [astronaut] [fd 3 wait 1]
ask :aliens [fd alienspeed] AlienSpeed reports its value to fd.
end

Also, edit your InitGame procedure to set the initial value of the AlienSpeed slider.

to InitGame
make 'AllRewards' [t1 t2 t3]
ask :AllRewards [ht]
make 'Aliens' [t4 t5 t6]
ask :Aliens [setheading random 360]
setAlienSpeed 5 Choose whatever number you want within the range you set.
end

To increase the game challenge, get the Aliens’ speed to automatically increase each time the
Astronaut captures a reward. For example,

to GotReward
ask :CurrentReward [ht]
announce [You found a solar panel!]
SetLives Lives + 1
SetAlienSpeed AlienSpeed + 2
NextReward
end

Test, test, test! And Save, save, save!

Can you also add a slider to change the Astronaut’s speed, a AstronautSpeed slider?
What procedure do you edit to incorporate this and how, where, and when can you increase
the speed? Remember to initialize the speed in the InitGame procedure.

You’ve probably noticed that you need to go back and edit your procedures as you add
features and improve your game. This iterative and incremental process is normal in the
development of video games and many other types of programs. This process lets you

carefully move from a simple design to a more complex one, debugging as you go.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 21

Lesson 4 – Events

Step 4: Reviewing and Refining

Take some time now to review your game to determine what is missing. For example, currently
when the Astronaut runs out of lives, the game ends, but no additional information appears.
What else could happen once the game is over?

In the LoseOneLife procedure, when available Lives equal zero, everything stops
(stopall). Instead of just stopping everything, you can either add some commands here to
describe other reactions or you can create a GameOver subprocedure that is general enough
to use when there are no more lives or, if you add more features, when other conditions are
met. This second method gives you more flexibility.

to GameOver :reason :Reason is a local variable that is used only in this procedure.
announce word 'Game over! ' :reason
stopall Everything stops when a game is over.
end

Word combines its inputs into one word and reports this word to another command, in this
case announce.

Next, edit your LoseOneLife procedure.

to LoseOneLife
if Lives = 0 [GameOver 'You ran out of lives.']
setLives Lives – 1
end

'You ran out of lives' replaces the local variable :reason in the GameOver
procedure. You need a single quotation mark at the start and end of the phrase.

Remember to save!

An input on the title line of a procedure is a local variable. A local variable holds its value only
while Lynx is running that procedure. That means that when running the procedure, the

procedure requires an input (like forward or any other built-in command that requires an
input).

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 22

Lesson 5 – Raising the Game Level

Step 1: Adding Boundaries

You now have all the main pieces of your game. It’s time to consider what other features would
enhance game play.

You may have noticed that once the Astronaut and Alien reach the coloured bars at the edges
of the Work Area, they cross them and seem to leave the game field, reappearing at the
opposite end of the field. It’s as if they’ve gone around the back of the screen or wrapped
around it like a ribbon if you were tying a package.

To keep all the elements within the game field at all times, make the bars true boundaries. Get
the Astronaut or the Aliens to react when they touch a colour.

Start by creating an On colour event handler for the Astronaut.

First, right-click on the Astronaut, click on the down arrow next to On colour and select New.

Click Apply.

A new procedure appears in the Procedures Pane.

Read the comments and delete them. Note that there are two local variables in this
procedure, :prevColour and :newColour. As the Astronaut moves, it checks the colour
under it and gauges a change in colour (from a previous colour to a new colour).

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 23

Lesson 5 – Raising the Game Level

Consider this program:

to Astronaut_oncolour :prevColour :newColour
if equal? :prevColour :newColour [stop]
if :newColour = 'red' [back 7 right random 360]
end

Look at it line by line:

if equal? :prevColour :newColour [stop]

This means if the previous colour is the same as the new colour, do the instructions in the
square brackets, which in this case is to stop the procedure. If not, Lynx goes to the next line.

Note this uses stop, not stopall. Stop only stops the procedure that it is part of stopall
does what it says – stops everything.

if :newColour = 'red' [back 7 right random 360]

If new colour is a specific colour, in this case red, the instructions in the brackets run.
Remember to use the colour that you used for your boundaries.

In the instructions for the if statement, the Astronaut backs up a little and turns a random
amount. Using random means the Astronaut’s movements are less predictable.

It’s good to note that without the first instruction line in this procedure, every time the Astronaut
moves over red, even if it had been on red before, it would follow the instruction for red. The
first line reacts only to a change in colour.

Create a similar procedure for the Aliens. Since this procedure will be used by all your aliens,
create an alien_oncolour procedure in the Procedures Pane first.

Then select this procedure in each Alien’s On colour event handler.

For example:

to alien_oncolour :prevColour :newColour
if equal? :prevColour :newColour [stop]
if :newColour = 'red' [bk 10 random 360]
end

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 24

Lesson 5 – Raising the Game Level

Next, it is important to open the dialog box of each Alien and select this procedure in the On
colour event handler.

Step 2: Upping the Game – Exploring the Timer (Optional)

Instead of letting the Astronaut have an unlimited amount of time to reach each Solar Panel
reward, set a time limit.

Lynx has a built-in timer that can be used to create a calibrated way to keep track of elapsed
time. This timer runs automatically and is not controlled by procedures. As you’ll see, the only
way to control this timer is to reset it to 0.

First, create a text box that will keep track of the time available. Give it a meaningful name,
such as Time.

Set the value of the Time text box by typing in the Command Centre:

SetTime 300

Next, type this in the Command Centre:
show timer
342 You will get a different number.

Timer shows time elapsed since the last time the timer was reset or since Lynx was started.

Type in the Command Centre:
resett
show timer
21 You will get a different number.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 25

Lesson 5 – Raising the Game Level

To keep track of elapsed time, you can

• set the Time text box to a specific value (300 for example) at the start and then each time
a Reward is found,

• reset the built-in timer at the same time (so back to zero),

• then, each time the Astronaut moves, note the timer value at that instant and
subtracting it from the value in the Time text box.

Edit your movement procedure to include a way to keep track of time elapsed.

NOTE: To test the next changes, you must

1. add the new instructions to the movement procedure,

2. add a HideReward procedure, and

3. edit your InitGame procedure.

to movement
SetTime 300 - timer This subtracts elapsed time as measured on the  

Timer from the original value of Time
if time < 1 [HideReward] HideReward is a new procedure not yet defined.
ask [Astronaut] [fd 3 wait 1]
ask :aliens [fd AlienSpeed]
end

Why not use if time = 0 [HideReward]? Sometimes the value of Time may end up
being less than 0. Using time < 1 will report true when both the value of time = 0 and
when the value is less than 0.

The value of time is recalculated every time movement runs.

Note: Did you previously add a AstronautSpeed slider? If so, your movement procedure
would look like this. 

to movement
settime 300 - timer
if time < 1 [HideReward]
ask [Astronaut] [fd AstronautSpeed wait 1]
ask :aliens [fd AlienSpeed]
end

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 26

Lesson 5 – Raising the Game Level

Next, what happens when time runs out? Put these instructions in the HideReward
procedure. For example:

to HideReward
ask :CurrentReward [ht]
GameOver 'You ran out of time!' Use your Gameover procedure again.
end

Finally, you need to have a way to set the Time text box and reset the Timer to zero each time
a new reward appears for the Astronaut to find. The logical place to add these instructions is to
the NextReward procedure.

to NextReward
if empty? :AllRewards [winner]
make 'CurrentReward' first :AllRewards
make 'AllRewards' butfirst :AllRewards
SetTime 300
resett
ask :CurrentReward [st]
end

Now, test your procedures!

Remember to save your project!

Why not also edit the InitGame procedure?

You could add these instructions to the InitGame procedure, but you also would need
to add them to the NextReward procedure. This is because the Timer and the Time

text box are reset each time a reward is found. Since the NextReward procedure runs
immediately after the InitGame procedure when you start the game, you need only

include the instructions one time in the NextReward procedure.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 27

Lesson 6 – Final Steps

Step 1: Find a clipart for your Astronaut

Just like you did for the reward and the alien, go find a clipart for the Astronaut shape. Using
the turtle original shape was good for observing the direction and the functionality of your
game while you were working on it. Now is the time to go for the looks!

Click on the "+" in an empty clipart spot, note the clipart number, and use a setshape
instruction to give that shape to the Astronaut turtle. WAIT!

Before running the setshape instruction, make sure the RIGHT turtle is listening to the
instruction. You can either

• click on the Astronaut turtle before running the setshape instruction, or

• designate the turtle by its name using ask:
ask 'Astronaut' [setshape 4]
or using the comma method:
Astronaut, setshape 4

Step 2: Adding Sound Effects

Adding sound effects makes a game more fun. Where can you add them? How can you
improve the game-feel by adding them? Consider adding a sound when the Astronaut finds a
reward, when time runs out, or even when the game starts. Are there other times to add
sounds?

Step 3: Designing the User Interface

You have all the pieces for your game. How does it look? Do you need to tweak the layout? A
well laid out UI is part of good game design.

For example, it’s easiest for the user if the direction buttons are placed in the following pattern:

Where is your button to start the game? Is it in an easily seen place so players know when to
start? Buttons should be arranged so that a player can understand how to start and play just
by looking at the game.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 28

Lesson 6 – Final Steps

You should add a text box, announce alert or front page for your project that contains game
instructions. Create a button that runs a procedure that either shows the announce alert,
shows and then, after a few seconds or hides an instruction text box or moves from the
instruction page to the game.

Once you have decided where to put the buttons, freeze them in place.

freeze [button1 button2 button3 button4 button5]

You may also want to freeze the astronaut, the rewards, and the aliens. They’ll still follow
instructions, but a player won’t be able to cheat by dragging them!

Step 4: Using the Arrow Keys (Optional)

To add another option to the game, use the arrow keys on your keyboard instead of buttons to
change the Astronaut’s direction.

There are several commands you can use to read and report whatever keyboard characters
are pressed. Every key on the keyboard has a corresponding ASCII code (ASCII stands for
American Standard Code for Information Interchange). To determine an ASCII value, type in
the Command Centre:

show ascii 'A' Capital A.
65

It’s more difficult to use this method to find the ASCII values for keys other than letters and
numbers, but there are charts available online.

Once you know an ASCII value, you can use it to determine what the key is or to call that key:

show char 65
A

By using these codes, you can create actions triggered by various key presses. Look at the
tooltips following additional primitives to better understand how you can program various keys:
peekchar, key?, skipchar.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 29

Lesson 6 – Final Steps

Here is the beginning of a procedure to use:

to direct
if not key? [stop] If there’s not a key pressed, stop only this procedure.
if peekchar = char 28 If the key pressed is the left arrow, whose ASCII code is 28...
[ask [Astronaut] [seth 270]] ...the Astronaut sets its direction West.
skipchar Forgets the last key pressed so the memory is cleared for  

the next time the procedure runs.
end

You’ll also need to define a procedure that keeps running the direct procedure, for example:

to UseKeys
skipchar This ensures the memory is cleared of past key presses.
forever [direct]
end

Test these procedures before you add the other directions.

Add the additional lines for the other keys. The ASCII codes for the other directions are:
• Right-arrow = 29
• Down-arrow = 31
• Up-arrow = 30

Can you add the appropriate lines to the direct procedure? Continue the following
procedure.

to direct
if not key? [stop]
if peekchar = char 28 [ask [Astronaut] [seth 270]]
 Remember to have two ending brackets!
if peekchar = char 29 [ask[astronaut][seth 90]]
...
... The code for the other two arrows...
skipchar
end

NOTE: Skipchar is added just once, at the end of the procedure.

Test your procedures!

UseKeys should run when the Astronaut and the Aliens are set in motion, so add it to
startgame.

Test your game. If you use the keyboard to drive the astronaut, you may want to declutter your
game field by unfreezing and deleting the direction buttons.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 30

Lesson 6 – Final Steps

IMPORTANT: After collecting a solar panel (and clicking OK in the announce box), you need to
click again in the Work Area to re-enable your arrow keys. You HAVE to click in the Work Area
for peekchar to work.

Step 5: Share your Project.

When you have finalized and saved your game and are ready to go public, there are several
ways to share your project. You should talk to your teacher about the best way to share your
projects.

FROM THE LYNX EDITOR

● From within the Lynx editor, simply click on the Share icon in the top-left corner of the
editor.

● In the dialog box that comes up, select Project Properties and choose an image file
to use as a preview. (Use the Preview Image Select button to get a file from your
device). Enter a title and a description.

● Then click on Sharing Options and click on Create a link to share. Copy the link to
paste it where it is needed or click on E-Mail to send the link by email.

● You can also share via Twitter or Facebook.

FROM WITHIN YOUR LYNX PERSONAL SPACE IN THE CLOUD

● From your Lynx personal space, click on your project to open it in Play Mode.

● Then click on Share and then follow the steps described immediately above.

ENJOY (AND EDIT) MY PROJECT

● You can not only let your someone play your game, but also let them edit it.

● Before sharing a project, go to its Properties in your Lynx personal space in the cloud.

● Uncheck the Private check box.

● Click on the Share button and then the + sign in the URL field and Copy the Link.

Send the link to a friend. Using the link, he / she will be able to make and save changes to the
game but your original game remains the same.

v1 2020-04-06
(c) Logo Computer Systems Inc. 2020

All Rights Reserved Page 31

