

ASTRONAUT VS ALIENS
TEACHERS’ GUIDE

Astronaut vs Aliens - Teachers' Notes

Project Overview
Game-building is a rich learning experience that taps into a wide range of abilities and
interests. To start with, it’s creative! Students can let their imaginations go wild as they develop
the narrative for their game action. In addition, it involves logic in how different playing choices
are set up and the outcomes to which each choice leads, an understanding of visual impact
and its effect on gameplay, and a strong awareness of audience and the user experience.
Even the simplest games require considering all these factors.

In this project, students build an Astronaut vs Alien game, one of the best ways to launch into
the world of gaming. They can be very simple yet fun, non-violent, have a range of different
characters and circumstances, and appeal to all types of people. For an interesting explanation
of the history of seeker games from the original seeker game of Pac-Man to all its offspring
and their impact on today’s video game landscape, check out https://www.fastcompany.com/
1683023/how-pac-man-changed-games-and-culture.

In this project, the Seeker will be an Astronaut who needs to collect 3 solar panels to power-up
their space ship and get back to Earth. Aliens have another idea and want to get the Astronaut.

This project consists of six 45-60 minute lessons that introduce a number of more advanced
coding concepts such as conditional statements and logic operators, variables, and additional
applications of event handlers (more on these below). At the same time, it reinforces skills
practiced in previous projects.

Students will continue their work with student-created programs, interactive control objects
(such as buttons and sliders), both collision (or “touching”) detection and colour detection
event handlers, several types of variables and the importance of designing an understandable
graphical user interface (GUI). Finally, students will practice iterative incremental development,
which may sound intimidating, but basically means ongoing program review and revision as
students add new features and get new ideas about what they want to include in their games.
It means having regular rounds of review, debugging, and revision.

Prerequisites
Before starting students should already be familiar with the following:

• The Lynx layout: Work Area, Command Centre, Procedure Pane and Clipart Pane.

• Basic turtle commands (for example, forward, back, right, left, repeat, cg,
setshape, stamp, setsize, xcor, ycor) as well as any syntax associated with these
commands.

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 2

https://www.fastcompany.com/1683023/how-pac-man-changed-games-and-culture
https://www.fastcompany.com/1683023/how-pac-man-changed-games-and-culture

Astronaut vs Aliens - Teachers' Notes

• How to draw with the turtle (penup, pendown)

• How to work with clipart, sound and text boxes.

• How to define procedures (to, end, procedure name protocols, comments, and the use
of sub-procedures).

• How to add and program buttons and text boxes.

• How to create On touch events.

Standards Addressed
In this project, students will meet the following learning standards:

• Plan and write more complex computer programs, applying fundamental programming
concepts, and including clear internal documentation.

• Use conventions and terminology of computer science effectively.

• Use control structures in computer programs.

• Demonstrate the ability to use Boolean operators (e.g., not), comparison operators (for
example, equal?, member?).

• Write programs that incorporate user input, processing, and screen output.

• Write sub-procedures that use parameter passing and appropriate variables (e.g., local,
global) to perform tasks within programs.

• Demonstrate the ability to identify and correct syntax, logic, and run-time errors in
computer programs and to interpret error messages displayed by programming tools.

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 3

Astronaut vs Aliens - Teachers' Notes

Before You Start
1. At this point you should already have your teacher account set up on Lynx and have

rostered your girls in a team. In case one or some of your students are not registered with
Lynx yet, give them some time at the beginning of Lesson 1 to create their own account by
following the steps in the How to Create a Lynx Account:

2. In All Projects, inside the Games! Folder, look at the Astronaut Game sample at https://
lynxcoding.club/ with your students to understand how it works and how it was created.
Start by reviewing the following skills:

1. How to describe turtle movements using commands.

2. How to use clipart to add shapes for the turtle.
3. How to use event handlers, specifically the On touch event handler.
4. The use of words as a specific type of data in Lynx, as well as the appropriate

punctuation.

Next, talk about the project features, encouraging students to think about the following:

1. What is the basic logic behind conditionals and why are “if” statements needed in games?

All games make use of conditional statements, statements that first ask if something is
true or false and determine what action happens based on the answer. Whether a card
game, board game, or video game, conditional statements determine the flow of play and
all decision-making outcomes. As students build their games, they will use a range of
logic operators to modify their conditional statements. Logic in computer programming is
not only important for gaming, but it’s at the core of many fields of computer science,
including machine learning and other areas of Artificial Intelligence. Practice in using logic
statements and operators prepare students for even more advanced programming.

Suggest some examples from both everyday life and games they may have played. For
example, in the card game war, if my card > your card, then I win. Or, if your card = my
card, then we both must put down three cards upside down and turn over the fourth card.
What other examples can students think of?

2. How can you use different logic operators, such as not, and, or, member?, and equal?
to more precisely define logic statements? (Note: Although not all of these are used in
this project, knowing these provide important options for students as they extend this
project and create new ones.)

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 4

https://lynxcoding.club/
https://lynxcoding.club/

Astronaut vs Aliens - Teachers' Notes

For example, how would the outcomes differ if someone says If you and your friend are
older than 16, then you can both go to the concert, versus if you or your friend is older
than 16, then you can both go to the concert.

Commands that end in a question mark are basically condition questions. Equal? asks if
two things are equal (the same as the equal sign =, but sometimes easier to use
depending on the elements of the conditional statement). Member? asks if one item (a
letter or word, for example) is a member of another item (a word or group of words).

Can students think how they might use not?

Idea: if my age does not equal your age we are not twins (although even if they are equal,
we may not be twins. But that’s the interesting part of logic.)

3. Event handlers control responses to interactions such as when a sprite touches a colour
or another sprite. What types of game features depend on or are enhanced by the use of
interactive events?

Have students first think of examples from real life. What happens when a person meets
a stranger? Maybe nothing. But what happens when one friend meets another? What if
one friend is angry at the other?

Next, have students think of video games they play. What happens when one character
jumps and hits (touches) another object in the game? What happens if one of the objects
is a car and the other is a frog (as in the old game Frogger)? What if the character
touches a “prize” object? What happens if it’s an enemy?

4. How do you build an effective and attractive user interface (UI) or, in this case, graphical
user interface (GUI – pronounced Gooey)? What makes a good interface?

The GUI shapes how the user interacts with a game and is particularly focused on the
game’s graphical design – how it looks and how attractive it is. It takes into consideration
the layout of all buttons, text boxes, sliders, and other features users may use to interact
with the game. It also determines how and where user’s get necessary information easily
and in a timely fashion. The best game can be ruined by a confusing interface. Design
helps lead the user through a game and enhances the user experience (UX). What’s
even more important is that a good GUI doesn’t make itself noticed, but rather is an
integral part of a well-made game. A well thought out, clean, clear, attractive, engaging
design turns a good game into a great one.

Most likely students have not focused on this aspect of the games they’ve played, so
making them aware of how user interfaces are designed may make them more aware of

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 5

Astronaut vs Aliens - Teachers' Notes

this important aspect of game building. Ask students to think about their favourite games
and then share ideas on what they like in their GUIs and what they have seen that they
don’t like or found difficult to use.

5. Why use variables?

Just as in mathematics, variables can stand in for values that may change over time. This
makes it possible to give instructions to a whole group or class of objects. This makes it
possible to write shorter, clearer code (grade 7 will leave at 3 PM versus Simon, Erin,
Kale, Elijah, Layla, and so on will leave at 3 PM). It also provides a clearer picture of how
one group of sprites may interact with another in the game.

• Have a conversation with your students about the importance of debugging and iterative
incremental development. In this project, students implement the bare bones of their games
and then gradually add and test new features. Highlight the importance of planning. Remind
them to add comments to their procedures to help others understand their procedure use
and logic.

• Remind students that Lynx does not automatically save their work so they must save their
code often. Saving is quick and easy on Lynx by clicking on the Save icon (Arrow pointing-
up to a Cloud) AT Image

• Students who choose to do the optional steps will be introduced to the use of ASCII
(American Standard Code for Information Interchange) and how to use it to represent data
and add interactivity. ASCII is a set of digital codes, in this case, numbers, representing
letters, numerals, and other symbols, and is used as a standard format to facilitate the
transfer of text between computers. For example, the ASCII code for the letter A is 65. You
can use Lynx to find different ASCII codes, for example, type:
show ascii 'a'
97 ASCII codes are different for capitals and lower case letters

If you have an ASCII number and want to find out what character it represents, type:
show char 65
A

Coding with ASCII codes is especially helpful when programming responses to keys such as
the arrow keys or Return/Enter. Lynx can check if the ASCII code of a key the user presses
is the same as a specific ASCII value of, for example, the up arrow. If it is some specific
action happens, for example a sprite moves higher on the screen. This can be a very
powerful tool in a student’s game building toolbox.

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 6

Astronaut vs Aliens - Teachers' Notes

Students may want to explore why this standard was developed, how it has changed over
the years as computers moved from 8-bit characters or elements to 64-bit and how it
compares to other standards, such as Unicode.

Learning Targets and Checklist
Projects should demonstrate the students understanding of the following skills. Each of these
should contribute, in a logical way, to designing their game.

√ SKILL

Write, edit, and debug more complex user-defined programs.

Use commands to create multi-turtle animations.

Add interactive control with buttons and sliders.

Use both On touch and On colour event handlers to trigger specific actions
under specific conditions for specific sprites.

Use the word data type to create a personalized response to an event.

Use if conditional statements and logic operators such as not, or, equal?
and member? to determine actions at critical decision making points in their
procedures.

Create and use global, local, and state variables appropriately.

Use list processing primitives (first, butfirst) to change variable values.

Use the built-in timer to trigger actions.

Practice iterative development and debugging skills as programming becomes
more complex.

Include clear comments in the Procedures Pane.

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 7

Astronaut vs Aliens - Teachers' Notes

Useful Terminology

ASCII

ASCII (American Standard Code for Information Interchange) is a standard format designed to
facilitate the transfer of text between digital devices. It is used to represent letters, numbers,
symbols, and control keys such as space bar, arrow keys, etc, used to format text. Over time,
the code has had some modifications and extensions, for example, to take into consideration
special diacritical marks added to letters in various languages, but the main core and function
of the code have remained the same.

Google ASCII and you can find a few web sites with a more complete explanation.

CONDITIONAL STATEMENTS

A conditional statement is an if – then logical statement. It first tests if a condition is true. If it
is, then some specific action results. For example, if two numbers are equal (it’s true), the word
“match” is printed. An ifelse statement goes a bit farther. It not only specifies what to do if
the condition is true, but also what to do if the condition is false.

GRAPHICAL USER INTERFACE (GUI)/USER INTERFACE (UI)

The GUI shapes how the user interacts with a game and is particularly focused on the game’s
graphical design. This includes the layout of all buttons, text boxes, sliders, and other features
users may use to interact with the game. It also takes into consideration how and where user’s
get necessary information easily and in a timely fashion. A UI is more general and may include
input devices (touch, mouse) and other ways in which a user might interact with a program.

ITERATIVE PROGRAMMING

Iterative programming is a programming process that involves multiple cycles of planning,
development, and review, with new features added or new designs implemented in each cycle.
It differs from a project in which all details are specified before development and review is only
for debugging purposes, not for adding and/or shaping features and building up the actual
design.

LOGIC OPERATORS

Logic commands are essential components of conditional statements and help define the
condition being tested. They include commands such as and, or, not, and, in Lynx, any of the
commands the end with a question mark, for example key? (is a key pressed?), equal? (are
inputs equal?), and member? (is one item a member of another?).

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 8

Astronaut vs Aliens - Teachers' Notes

New Concepts and New Lynx Commands
1. Preparing the background

setcolour

2. Working with multiple turtles
clone
ask
everyone

3. Randomness
random

4. Parallel processes
forever
stopall

5. Collision detection
on touch event handler
on colour event handler

6. Using basic data types: words
word
announce

7. Reset procedure, buttons and UI
elements
freeze

8. Cartesian coordinates
setx, coorx
sety, coory

9. Conditionals
equal? if, ifelse, not, or, key?

10. Timer
resett, timer

11. Variables
make

12. List processing
butfirst (bf)
first
member?

Common Errors and Debugging
Debugging is an excellent medium for developing problem-solving skills. Lynx has a number of
tools, to support students as they learn to code in Lynx, including auto-complete, tool tips, error
messages, and, of course, a Help page.

To begin, it’s good to identify the type of bugs a student may encounter. There are two main
types of errors that programmers make. Both types of errors will occur at this level of
programming. These will be explored and discussed in more detail below.

ERROR MESSAGES

It’s also very important to remind students to pay attention to error messages, especially when
they have many procedures and sub-procedures. They should particularly pay attention to the
line number cited in the message if there’s an error in one of the procedures.

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 9

Astronaut vs Aliens - Teachers' Notes

TWO MAIN TYPES OF ERRORS

1. Typing or syntax errors

• Forgetting to put a space between a command and its input, like writing fd30 instead
of fd 30.

• Typos, for example typing fe 20 instead of fd 20.

• Using the wrong type of input or syntax punctuation, for example, writing
repeat 4{fd 1 wait 1} instead of repeat 4 [fd 1 wait 1].

When an error occurs, a message appears describing the error. Often, students ignore
messages, but since these messages highlight where the error is, students should be
reminded to pay attention to them. For example, if a student types fd30, they will get
the message: I don’t know how to fd30. Lynx interprets this single word as a
new command that is neither a built-in command nor a procedure name. Unlike
people, Lynx can’t “interpret” or “figure out” what the student means, it can only
respond to what is typed.

This type of error can also occur in creating and using variables appropriately. If
students are getting error messages, have them review the variables they created to
make sure they’ve used quotation marks and colons appropriately

• Not adding end at the end of a procedure.

Sometimes students forget to type end as the final line of a procedure. The procedure
without the end line works normally, but the procedures written after that one won’t be
found. If a student is having a problem running a procedure from the Command Centre
or from a button and gets the message I don’t know how to, first check if all the
procedures in the Procedures Pane include end.

2. Errors in logic

• Sequence of actions - Commands need to run in a specific order, depending on how
the coder wants events to unfold. This idea of order is something everyone commonly
deals with in life: we need to put on our socks before we put on our shoes and not the
inverse. This algorithmic thinking is a main computational thinking skill.

Although this seems easy, as programs become more complex, the sequence of
events may become more difficult to follow. In this project, understanding the logic

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 10

Astronaut vs Aliens - Teachers' Notes

should be fairly easy, but it’s a good idea to help students be aware of how they
determine what actions they may want to have happen before others and to be able to
put their thinking into words.

• The flow of information from different types of commands, including those that send (or
output) information to another command. These types of problems may appear as
students begin coding more complex projects.

Final Notes
Each lesson should take about 45-60 minutes (although, if students have more time and want
to continue, there’s lots to explore!).

Urge students to spend time planning. This will help them get started and save them time as
they go.

Remind students that although it’s exciting to jump in and begin a new project, it’s important to
start by first focusing on their game’s functional design. There are several things they should
think about before they start coding. Remind students to:

1. Know your goal! The end project looks (and works!) better when you start with a plan and
you know what your goal is.

2. Decide on some project parameters. How many prizes will the Astronaut have to find?
What will the prizes be? How many lives will the Astronaut have? Who or what will be
pursuing the astronaut? In the sample, the Astronaut is trying to find three solar panels but
is also trying to elude aliens, but you should use your imagination.

3. Create a first draft! Start by creating a first draft of the project that includes the main
project components. As a coder, it is important to plan and create your code before you
spend time on the visual design features (Tip: Choose your final clipart last.) Go over the
project several times—each time adjusting and fine-tuning it to achieve your original goals.
This is called an iterative approach to development.

4. Save time to polish your project! Remember to save some time at the end for polishing
the final project by, for example, adding special clipart and sounds or music.

Be flexible with the varied pace of your student’s abilities and knowledge. Timing will vary and
it’s important to be patient as they code and give students time to understand how the code,
commands, and logic work and not just copy the model.

Let students know that it’s okay to change plans once the work has started. Plans are not

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 11

Astronaut vs Aliens - Teachers' Notes

something carved in stone. It’s a good idea to evaluate a plan at key development points in
order to adapt it based on new ideas and skills learned. This project assumes frequent
reviews of the plan, as described above, as new features are added.

Students should be reminded that a good way to get an overview of their procedures to better
understand the structure is by collapsing procedures by clicking the triangle beside the to in
each procedure name. This allows students to see the ‘forest’ and not get lost in the ‘trees’ and
works like an outliner in a word processor. Note: If the To is capitalized, it will not work. It must
be lower case to.

Emphasize to students the importance of testing their procedures at each iterative incremental
phase. They should not just implement all procedures and test only at the end. This latter
approach makes it much more difficult to find errors of any kind.

v 1 2020-04-06
© Logo Computer Systems Inc. 2020

All rights reserved Page 12

